Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
ACS Sens ; 8(4): 1558-1567, 2023 04 28.
Article in English | MEDLINE | ID: covidwho-2280493

ABSTRACT

Wastewater analysis of pathogens, particularly SARS-CoV-2, is instrumental in tracking and monitoring infectious diseases in a population. This method can be used to generate early warnings regarding the onset of an infectious disease and predict the associated infection trends. Currently, wastewater analysis of SARS-CoV-2 is almost exclusively performed using polymerase chain reaction for the amplification-based detection of viral RNA at centralized laboratories. Despite the development of several biosensing technologies offering point-of-care solutions for analyzing SARS-CoV-2 in clinical samples, these remain elusive for wastewater analysis due to the low levels of the virus and the interference caused by the wastewater matrix. Herein, we integrate an aptamer-based electrochemical chip with a filtration, purification, and extraction (FPE) system for developing an alternate in-field solution for wastewater analysis. The sensing chip employs a dimeric aptamer, which is universally applicable to the wild-type, alpha, delta, and omicron variants of SARS-CoV-2. We demonstrate that the aptamer is stable in the wastewater matrix (diluted to 50%) and its binding affinity is not significantly impacted. The sensing chip demonstrates a limit of detection of 1000 copies/L (1 copy/mL), enabled by the amplification provided by the FPE system. This allows the integrated system to detect trace amounts of the virus in native wastewater and categorize the amount of contamination into trace (<10 copies/mL), medium (10-1000 copies/mL), or high (>1000 copies/mL) levels, providing a viable wastewater analysis solution for in-field use.


Subject(s)
COVID-19 , Water Purification , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Wastewater , Oligonucleotides
2.
Chemistry (Weinheim an der Bergstrasse, Germany) ; 28(15), 2022.
Article in English | EuropePMC | ID: covidwho-1837001

ABSTRACT

A unique DNA aptamer, denoted MSA52, displays universally high affinity for the spike proteins of the wild‐type SARS‐CoV‐2 as well as its Alpha, Beta, Gamma, Epsilon, Kappa, Delta and Omicron variants. This aptamer also recognizes pseudotyped lentiviruses expressing eight different spike proteins of SARS‐CoV‐2 with very high affinity, exhibiting dissociation constants (Kd) of 20–50 pM for these viruses. More information can be found in the Research Article by J. D. Brennan, Y. Li et al. (DOI: 10.1002/chem.202200078).

3.
Chemistry ; 28(15): e202200524, 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1750335

ABSTRACT

Invited for the cover of this issue are John Brennan, Yingfu Li, and co-workers at McMaster University. The image depicts MSA52 as a universal DNA aptamer that recognizes spike proteins of diverse SARS-CoV-2 variants of concern. Read the full text of the article at 10.1002/chem.202200078.

4.
Chemistry ; 28(15): e202200078, 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1653193

ABSTRACT

We report on a unique DNA aptamer, denoted MSA52, that displays universally high affinity for the spike proteins of wildtype SARS-CoV-2 as well as the Alpha, Beta, Gamma, Epsilon, Kappa, Delta and Omicron variants. Using an aptamer pool produced from round 13 of selection against the S1 domain of the wildtype spike protein, we carried out one-round SELEX experiments using five different trimeric spike proteins from variants, followed by high-throughput sequencing and sequence alignment analysis of aptamers that formed complexes with all proteins. A previously unidentified aptamer, MSA52, showed Kd values ranging from 2 to 10 nM for all variant spike proteins, and also bound similarly to variants not present in the reselection experiments. This aptamer also recognized pseudotyped lentiviruses (PL) expressing eight different spike proteins of SARS-CoV-2 with Kd values between 20 and 50 pM, and was integrated into a simple colorimetric assay for detection of multiple PL variants. This discovery provides evidence that aptamers can be generated with high affinity to multiple variants of a single protein, including emerging variants, making it well-suited for molecular recognition of rapidly evolving targets such as those found in SARS-CoV-2.


Subject(s)
Aptamers, Nucleotide , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/metabolism , COVID-19/virology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL